翻訳と辞書
Words near each other
・ Níðhöggr
・ Nížkov
・ Nížkovice
・ Néria Lúcio Buzatto
・ Nérigean
・ Nérignac
・ Néris-les-Bains
・ Néron (opera)
・ Néron differential
・ Néron model
・ Néron, Eure-et-Loir
・ Néronde
・ Néronde-sur-Dore
・ Nérondes
・ Néron–Ogg–Shafarevich criterion
Néron–Severi group
・ Néron–Tate height
・ Néry
・ Néré
・ Nérée
・ Nérée Arsenault
・ Nérée Beauchemin
・ Nérée Boubée
・ Nérée Le Noblet Duplessis
・ Nérée Tétreau
・ Néstor
・ Néstor Adrián Fernández
・ Néstor Albiach
・ Néstor Almendros
・ Néstor Araujo


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Néron–Severi group : ウィキペディア英語版
Néron–Severi group
In algebraic geometry, the Néron–Severi group of a variety is
the group of divisors modulo algebraic equivalence; in other words it is the group of components of the Picard scheme of a variety. Its rank is called the Picard number. It is named after Francesco Severi and André Néron.
==Definition==
In the cases of most importance to classical algebraic geometry, for a complete variety ''V'' that is non-singular, the connected component of the Picard scheme is an abelian variety written
:Pic0(''V'')
and the quotient
:Pic(''V'')/Pic0(''V'')
is an abelian group NS(''V''), called the Néron–Severi group of ''V''. This is a finitely-generated abelian group by the Néron–Severi theorem, which was proved by Severi over the complex numbers and by Néron over more general fields.
In other words the Picard group fits into an exact sequence
:1\to \mathrm^0(V)\to\mathrm(V)\to \mathrm(V)\to 0
The fact that the rank is finite is Francesco Severi's theorem of the base; the rank is the Picard number of ''V'', often denoted ρ(''V''). The elements of finite order are called Severi divisors, and form a finite group which is a birational invariant and whose order is called the Severi number. Geometrically NS(''V'') describes the algebraic equivalence classes of divisors on ''V''; that is, using a stronger, non-linear equivalence relation in place of linear equivalence of divisors, the classification becomes amenable to discrete invariants. Algebraic equivalence is closely related to numerical equivalence, an essentially topological classification by intersection numbers.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Néron–Severi group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.